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Preface

Up until the latter half of the twentieth century, high angular resolution astronomy has

been limited by the unsteadiness of images observed through the turbulent atmosphere.

Although we are now able with adaptive optics to partially compensate for atmospheric

seeing, even the largest telescopes are only able to resolve six or seven of the largest and

nearest stars.

Further progress in high angular resolution astronomy can only be obtained through meth-

ods of interferometry. When the light from an array of telescopes is combined in an inter-

ferometer, the attainable resolution is limited not by the diameter of individual telescopes,

but by the longest baseline spanning the array. Whereas interferometry has been well de-

veloped for use at radio wavelengths, with researchers involved both in national facilities

and international collaborations, interferometry at optical and infrared wavelengths has yet

remained relatively unexploited. Major new optical/infrared interferometers are now under

construction by groups in both the United States and Europe and will soon open the field

to new and exiting science. Longer-term plans are also underway by the National Aero-

nautics and Space Administration and the European Space Agency for the development of

space-borne interferometers for astrometry, imaging, and planet detection. The technology

for optical/infrared interferometry continues to develop rapidly, and exiting opportunities

await astronomers and astrophysicists now entering this field.

Michelson Fellowship Program

The Michelson Fellowship Program, funded through NASA’s Origins program and the Space

Interferometry Mission, seeks to support the scientific community in building expertise in

optical and infrared interferometry. The Michelson Fellowship Program brings together

students and researchers in all stages of their career, through fellowships at the post-doctoral

and graduate level, as well as through undergraduate research opportunities, and summer

schools.

1999 Michelson Summer School

The 1999 Michelson Interferometry Summer School was held 9–13 August, 1999, at the

California Institute of Technology in Pasadena, California. The school was attended by 43

graduate students, 13 post-doctoral level researchers, and 15 professional scientists. This

was the first Summer School within the Michelson Fellowship Program and followed on from

the Summer School on Optical/IR Interferometry hosted by the U.S. Naval Observatory in

Flagstaff, Arizona, in October 1998. The lectures were given by staff of the Jet Propulsion

Laboratory, the US Naval Observatory, the Naval Research Laboratory, and faculty and
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staff from the University of California (at Berkeley and San Diego), Harvard University,

and Georgia State University.

The lectures emphasized the fundamentals of astronomical interferometry, focusing prin-

cipally on the engineering aspects of stellar interferometers. Subjects that were reviewed

included the design of interferometric arrays, strategies for combining starlight, and the

principles of observing, data reduction, modeling, and synthesis imaging.

The lectures were supplemented with day trips to the Mount Wilson Observatory and the

Palomar Observatory. This provided the opportunity to visit the Infrared Spatial Interfer-

ometer, the CHARA Array, and the Palomar Testbed Interferometer, and the possibility

for further discussions with the lecturers.

Overview of the Course Notes

These course notes document the lecture series from the 1999 Summer School. The lecture

material was chosen to emphasize the development of ground-based interferometry and to

include an introduction to the future possibilities of space missions within NASA’s Origins

Program. The material contained in the course notes is, however, primarily concerned with

ground-based interferometry. Plans for space-based interferometry, although not described

here, are well represented in the JPL publications describing the Space Interferometry

Mission and the Terrestrial Planet Finder (see Appendix B).

Although most subjects are covered in detail in their respective chapters, certain subjects,

such as the use of fiber optics, spatial filters, and adaptive optics, are mentioned only in

passing. Some omissions were inevitable due to the limited scope of the Summer School,

and so resources for further reading are included in the Appendices.

The course notes are divided into 7 parts and 18 chapters covering the major themes

presented during the school. When reading from one chapter to another, please bear in

mind that the notation is only consistent within individual chapters.

Peter R. Lawson

Addendum

These course notes have been revised for re-issue on CDROM. The revision corrected minor errors

in the text, updated the website addresses included in Chapter 1 and Appendix B, and improved the

quality of the corresponding PDF files. I am most grateful to Chris Hawley at JPL for helping me

resolve questions concerning LATEX2ε, dvips, and PDF file conversion. This revision of the Course

Notes in PDF format is also available at the Michelson Fellowship Program Website at

http://sim.jpl.nasa.gov/library/coursenotes.html. — PRL, December 6, 2000.
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Chapter 1

Why Build Stellar Interferometers?

Harold A. McAlister

Center for High Angular Resolution Astronomy

Georgia State University, Atlanta, Georgia

1.1 The Challenge

Optical interferometers offer tremendous challenges and opportunities to suit the scientific

tastes of those wishing to build instruments at the frontiers of technology that will enable

science of an unprecedented nature. The minimum problem posed by interferometry is the

combination at a beam splitter of light from a pair of telescopes whose baseline projected

onto the sky determines the achievable resolution. In order to produce fringes at the beam

splitter, one must match the paths followed by the two beams to a micron or so in length and

hold them stable to a fraction of a wavelength of light. Herein lies the technical challenge.

Numerous factors conspire to make the creation of fringes a devilishly difficult chore. Path

delays and wavefront tilts are induced by the atmosphere even before light is collected by

the telescopes, and then all the downstream subsystems further degrade the problem.

Thus, in order to produce fringes, interferometers are necessarily complex and nested sys-

tems possessing numerous sophisticated subsystems. The light collectors themselves, be

they siderostats or telescopes, have complex controls and must be engineered to maintain

stiffness and smoothness of operation. Their sheer numbers pose problems of maintenance

that must not be underestimated. Optical delay lines are complex instruments occupying

large physical spaces and are a primary facilities burden and cost driver for an interfer-

ometer. On the other hand, the technical basis for delay lines is quite mature and highly

functional, and the devices work really very well. Beam combination schemes are an espe-

cially complicated issue, particularly when the number of collecting elements grows beyond

3
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Table 1.1: Current Ground-Based Optical/Infrared Interferometers

Facility Operating Site No. of Element Maximum Operating Operating

Acronym Institution(s) Location Collecting Aperture Baseline Wavelength Status

Elements (cm) (m) (microns)

GI2T Obs. Côte d’Azur Calern, FR 2 150 70 0.4–0.8 & >1.2 since 1985

ISI UC Berkeley Mt. Wilson, US 3 165 30+ 10 since 1990

COAST Cambridge U Cambridge, UK 5 40 22 0.4–0.95 & 2.2 since 1991

SUSI Sydney U Narrabri, AU 13 14 640 0.4–0.66 since 1991

IOTA CfA/U Mass Mt. Hopkins, US 3 45 38 0.5–2.2 since 1993

NPOI USNO/NRL Anderson Mesa, US 6 60 435 0.45–0.85 since 1995

PTI JPL/Caltech Mt. Palomar, US 2 40 110 1.5–2.4 since 1995

MIRA-I NAO Japan Tokyo, Japan 2 25 4 0.8 since 1998

CHARA Georgia St. U Mt. Wilson, US 6 100 350 0.45–2.4 since 1999

KI CARA Mauna Kea, US 2(4) 1,000(180) 140 2.2–10 initial 2001

VLTI ESO Cerro Paranal, Chile 4(3) 820(180) 200 0.45–12 initial 2001

LBT U Arizona, Italy, et al. Mt. Graham, US 2 840 23 0.4–400 initial 2005?

half a dozen or so, and offer plenty of room for creative ingenuity. Alignment and stabil-

ity offer interesting problems, and interferometers possess a depressingly large number of

optical surfaces, each one of which represents loss of light and corruption of that which it

passes downstream.

Many of these hardware subsystems have to be actively controlled and must work together

with other subsystems. There is no shortage of really fascinating hardware to be designed,

fabricated, installed, aligned, controlled and maintained in an interferometer. Thousands

of lines of code must be written, tested and probably continuously debugged. Obviously,

there is plenty of opportunity for failures along the way, but optimists would regard these

risks part of the allure of interferometry.

In addition to the hardware/software issues, interferometers require new tools and algo-

rithms for optimally scheduling observations and calibrating and archiving the data. Per-

haps the most challenging problem in this area is the task of producing images of high

fidelity and reliability.

Finally, there is the challenge of obtaining adequate funding to develop instruments in an

area still regarded by most as developmental. In particular, one must avoid over-heightening

expectations as to the kind of science forthcoming in the near term. To a considerable

extent, speckle interferometry suffered in the 1970s and early 1980s from an exaggeration

of its potential.

Many people find this sobering litany of problems to be the real meat of interferometry,

and, rather than being discouraged, some very clever scientists and engineers have devoted

much of their careers to solving the basic technical issues. Because of their efforts, we now

have a modest retinue of interferometers around the world poised to provide a substantial

body of science.

It has taken more than a century to extrapolate the basic physics of interferometry into the

working (or nearly so) instruments listed in Tables 1.1 and 1.2. I include only ground-based
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Table 1.2: Additional Information on Ground-Based Projects

Facility Facility Website

Acronym Name (http://)

GI2T Grand Interféromètre à 2 Télescopes www.obs-nice.fr/fresnel/gi2t/en/

ISI Infrared Spatial Interferometer isi.ssl.berkeley.edu/

COAST Cambridge Optical Aperture Synthesis Telescope www.mrao.cam.ac.uk/telescopes/coast/

SUSI Sydney University Stellar Interferometer www.physics.usyd.edu.au/astron/astron.html

IOTA Infrared/Optical Telescope Array cfa-www.harvard.edu/cfa/oir/IOTA/

NPOI Navy Prototype Optical Interferometer ad.usno.navy.mil/npoi/

PTI Palomar Testbed Interferometer huey.jpl.nasa.gov/palomar/

MIRA-I Mitaka optical-Infrared Array tamago.mtk.nao.ac.jp/mira/

CHARA Center for High Angular Resolution Astronomy (CHARA) Array www.chara.gsu.edu/CHARA/

KI Keck Interferometer huey.jpl.nasa.gov/keck/

VLTI Very Large Telescope Interferometer www.eso.org/projects/vlti/

LBT Large Binocular Telescope medusa.as.arizona.edu/lbtwww/lbt.html

facilities in the tables (and in this discussion), but there is, of course, considerable activity

and momentum in space-borne interferometers as well.

Current instruments explore four degrees of freedom (number and aperture of collecting ele-

ments, maximum baseline, and wavelength regime) with a level of incompleteness consistent

with available funding. Each of these facilities has its own approach to solving the phasing

problem, but all interferometers possess certain similarities. Some of these instruments are

principally devoted to rather specific scientific problems such as absolute astrometry for

NPOI and stellar diameters for SUSI. The reader can explore websites to see how each of

these instruments has responded to the technical challenges of producing fringes.

Several of these instruments are lineal descendents of the Mark III interferometer that

operated on Mount Wilson during the 1980s and presented solutions to most of the requi-

site technical challenges. The Mark III also produced important scientific results of high

accuracy to lend confidence in the value of interferometry.

1.2 The Opportunity

What science can these instruments pursue? Will they live up to their promise? Will their

scientific products engender the confidence of the scientific community to invest precious

resources in next-generation instruments? Are we even building the right instruments now?

We can only hazard a guess at the first of these four questions. But it is a well-informed

guess. Unquestionably, current interferometers possess wonderful resolution. The longest

baseline facility now in existence is the Sydney University Stellar Interferometer (SUSI). Its

limiting resolution of 100 micro-arcsec is a gain of four orders of magnitude over traditional

ground-based direct imaging through photography and more than two orders of magnitude

gain over adaptive optics corrected telescopes and over the Hubble Space Telescope. But

SUSI and other long-baseline interferometers are extremely limited in sensitivity, and all

interferometers inherently suffer from extremely narrow fields of view. A comparison with

HST is thus a bit cavalier in terms of comparative sensitivity and field size.
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The current generation of interferometers will primarily contribute to stellar astronomy.

Their ability to play an important role in extragalactic astronomy (for example, through

the direct imaging of broad-line regions of quasars) is made infeasible by their small aper-

tures and/or relatively short baselines. Signal-to-noise ratio is a precious commodity to an

interferometer where exposure times are limited by the atmospheric redistribution time t◦,

typically a few tens of milliseconds.

So, while interferometry will not soon satisfy the needs of the extragalactic community,

the resolution and accuracy brought to bear on problems of stellar astrophysics will yield

substantial new science. Fundamental new data for stars will be forthcoming in unprece-

dented quantity and quality. These data will include effective temperatures, surface fluxes,

masses and luminosities for stars well distributed over spectral type and luminosity class.

Sensitivity limitations will maintain the elusiveness of white dwarfs and the lower end of the

main sequence, but, for the first time, tens of thousands of objects populating the majority

of the H-R diagram will be accessible to high-resolution studies.

To be most useful, this flood of new data must be well calibrated. Measurements of the

physical parameters for stars require accuracies at the couple of percent level in order to

best challenge astrophysical theory. Resolution and accuracy are together the key to having

the greatest scientific impact. Here, again, the history of speckle interferometry comes to

mind in which casual calibration of potentially simple things like pixel scale led to results

of little or no use even though significant amounts of large telescope time were consumed

in their production.

We do not need thousands of new stellar masses accurate to 10%, but we do need hundreds

accurate to 1%. Similarly, stellar limb darkening does not require confirmation but does

need to be measured with sufficient accuracy to confront theory. Interferometrists need

to establish more collaborations with theorists in selecting the optimal utilization of these

wonderful new instruments.

In addition to the proliferation of basic data for stars, interferometers can and will contribute

to a wide variety of problems. For single stars, such problems include the measurement

of limb darkening, determination of linear diameters for stars with accurate parallaxes,

studying phenomena associated with star formation (including dynamic phenomena) and

pre-main sequence objects, measuring absolute rotation, stellar flares, p-mode oscillations

and the pulsations of Cepheid and Mira variables (to include the direct geometric calibra-

tion of the period-luminosity relation for Cepheids), and phenomena associated with hot

stars (shells, winds, etc.) and cool giants and supergiants. For binary stars, in addition

to resolving the majority of the spectroscopic binaries and providing masses in large num-

bers, interferometric surveys for duplicity will be carried to new levels of completeness and

close binary phenomena will be detected and maybe even imaged. Low mass companions,

including those of planetary mass, may be astrometrically detected in binaries.

The first really interesting images from interferometry will involve the detection of surface

features on normal stars and phenomena in the close-in environments of young stellar
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objects. Interferometers will witness the eruptions of novae and perhaps even the explosion

of a supernova.

We can predict, with great longing, many of the research enterprises to be opened by

interferometry in the coming years. But we must keep in mind that we are dealing with

multiple orders of magnitude increase in resolution. In a letter to the author in 1990, UCLA

astronomer Daniel Popper remarked

History has taught us that whenever a new technique enters a new realm of

observational phase space, the most striking and productive results tend to be

those not anticipated by even the most prescient thinkers.

Professor Popper, who maintained the very highest research standards throughout his long

and exceptionally productive career and who was known and respected for his very careful

and critical approach to science, clearly felt that the unexpected discoveries to be made by

interferometry will be the true hallmarks of the field.

1.3 Towards the Future

The current generation of projects may be the stepping-stones to an “Optical/IR Very

Large Array.” For this to happen, significant science must be forthcoming in the near term

from our present investment in the field. In this context, “significant” implies quality

as well as quantity in support of pressing problems in stellar astrophysics. Imaging of

relatively complex objects must be demonstrated, and this is a challenge due to the small

number of collecting telescopes in current arrays. We can anticipate very little extragalactic

results except for calibrations, based upon galactic objects. which extend to extragalactic

realms and into cosmology. The field needs more partnerships to pool intellectual and

financial resources, more involvement of theorists, and the training of more “black-belt”

interferometrists.

One might look forward to great successes from present-day efforts so that by, say 2010,

considerable momentum will exist towards the design and construction of an interferometer

comprised of several dozen 4–6 meter aperture telescopes (each equipped with adaptive

optics) distributed over kilometer-plus baselines. At that time, interferometry will truly

have come of age and the words of Dan Popper will entice us to new realms of exploration

and discovery.
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Chapter 2

Elementary Theory of Interferometry

A.F. Boden

IPAC, California Institute of Technology, and

Jet Propulsion Laboratory

Pasadena, California

We introduce and discuss the elementary theory of astronomical interferometry. We derive

the basic quantitative formalism for interferometric observables from incoherent astronom-

ical sources with a particular emphasis upon optical interferometry. Concrete examples of

the theory are given in the context of common model source morphologies.

2.1 Introduction

It is deceptively simple to describe interferometers as instruments that measure interfer-

ence (or other properties associated with the interference) of an electromagnetic field. The

motivation to consider interferometry of astronomical sources is fundamentally pragmatic;

we are compelled to consider astronomical interferometers because interferometers provide

access to high angular resolution information at a small fraction of the price of conventional

single-aperture telescopes with similar angular resolution. This is not to suggest that inter-

ferometers replace more conventional astronomical instrumentation, only that they provide

a cost-effective means to address certain scientific questions.

Herein we will introduce and develop the basic theory of astronomical interferometry. Start-

ing from general properties of the electromagnetic field, we will consider the response of

an idealized interferometer to idealized astronomical sources. We will further apply this

theory to common idealized source morphologies. Given the context in which these lecture

notes appear, we will primarily make these developments with optical interferometers in

9
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mind; interferometers that operate over finite pass-bands in the optical (or near-optical)

part of the electromagnetic spectrum. Optical astronomical interferometers have histori-

cally been used to study stars—a natural match given most stars emit a large fraction of

their radiation at optical (near-optical) wavelengths.

2.2 A Simple Interferometer and a Monochromatic Source

Consider a model two-aperture interferometer as depicted in Figure 2.1. Two identical

apertures A1 and A2 are located at three-space positions x1 and x2 respectively, and thus

are separated by a displacement B ≡ x2 − x1. B is typically known as the baseline of the

interferometer. Each aperture is pointed at a single celestial point source located at relative

position S from the centerline of the array pair; the pointing direction is given by the unit

vector ŝ ≡ S/|S|. Because optical photons (to an extremely good approximation) do not

interact with each other, in analyzing the interferometer we can consider the harmonic

decomposition of the light from the astronomical source. We therefore start by considering

the source as monochromatic with wavelength λ. We’ll also assume the celestial source is

a sufficient distance that the phase-fronts of the incident optical radiation field are planar.

At positions x1 and x2 the monochromatic optical fields from the source have a simple

form as (the real part of) an exponential.∗:

φ1 ∼ eik·x1e−iωt = e−ikŝ·x1e−iωt

and

φ2 ∼ eik·x2e−iωt = e−ikŝ·x2e−iωt

= e−ikŝ·x1e−ikŝ·Be−iωt.

Without loss of generality we can absorb the common phase factor e−ikŝ·x1 into whatever

normalization we choose for the optical fields, hence:

φ1 ∼ e−iωt,

φ2 ∼ e−ikŝ·Be−iωt. (2.1)

Equation 2.1 merely codifies the fact that the relative phase of the radiation incident on

the two apertures is a function of the geometry of the viewing situation—in particular the

relative angle of the incoming phase fronts and the baseline vector B.

∗Herein, in so far as possible, we take our nomenclature for electromagnetic fields from Jackson (1998)

In particular, a plane parallel monochromatic electromagnetic field of frequency ν propagating in free space

in a direction n̂ is written as:

φ ∼ Aei(k·x−ωt),

with

ω = 2πν = 2πc/λ,

k = ω/c = 2πν/c,

k = kn̂,

and k (k) as the wave vector (number) of the field. Consult Jackson (1998) Chapter 7 for additional details.
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Figure 2.1: Idealized Interferometer.
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As shown in Figure 2.1, we imagine that after collection the optical fields are propagated

to a power-linear detector where they combined, and the resulting output is measured.

Post-collection the optical fields are propagated over distinct distances d1 and d2, incurring

an additional relative phase. Imagining that the optical fields are directly combined, at the

detector the fields have phases that are:

φ1 ∼ eikd1e−iωt,

φ2 ∼ eikd2e−ik0ŝ·Be−iωt. (2.2)

With no significant efficiency differences in the two interferometer arms, a direct† combi-

nation of the two optical fields results in a net field whose phase is given by:

φnet = φ1 + φ2 ∼ e−iωt
(

eikd1 + eikd2e−ikŝ·B
)

,

from which the resulting time-averaged detected power is (proportional to):

P ∝ φ∗netφnet = 2 (1 + cos k(ŝ ·B + d1 − d2)) .

To be more concrete, let us specify the incident source flux power F in units of energy

incident per unit time per unit cross-sectional area, and the collecting area of the apertures

as A. Then (up to efficiency factors) the detected power is given by:

P = 2AF (1 + cos k(ŝ ·B + d1 − d2)) (2.3)

= 2AF (1 + cos kD) . (2.4)

In the space of relative delay D ≡ ŝ ·B + d1 − d2, P varies harmonically between zero and

2AF (the total collected power of the two apertures) with period λ; this is plotted in Figure

2.2.

Equation 2.3 has the form of an infinite series of power oscillations or interference fringes,

as a function of the optical delay D, or equivalently d1 − d2. Because ŝ can be interpreted

as an angle on the sky with dimensions of radians, adjacent fringe crests projected on the

sky are separated by an angle given by:

∆s =
λ

B
. (2.5)

2.3 Polychromatic Sources and
Interferometers of Finite Bandwidth

The interference fringes in Equation 2.3 were infinite; we saw interference regardless of the

values of d1 and d2. From a practical standpoint life is not quite this kind. In general we

†Direct combination in this context means combination without additional phase asymmetry between

the two arms. This is an idealization which simplifies the mathematics at the expense of ignoring a rela-

tively unimportant phase factor present in most optical interferometers which use beam splitters for beam

combination.
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can only build interferometers with finite passbands, and this causes some headaches. Let’s

see how this goes.

Consider now a more general source with spectral intensity Fν (dimensions of incident

power per cross-sectional area per unit frequency), and an interferometer that has a finite

frequency response given by η(ν). Because astronomical sources give us individual frequen-

cies that are mutually incoherent, the total detected power becomes a sum of the detected

power at each frequency after Equation 2.3 (writing the integration in the frequency do-

main):

P =

∫

dν 2AFν η(ν) [1 + cos kD] . (2.6)

It is illustrative to consider a specific instance. First, as a simplifying assumption we take

the source spectral power to be constant, Fν−0, over the system bandwidth. Next, take

a specific bandwidth pattern—a “top hat” pattern with constant throughput η0 over a

frequency (wavelength) band ν0 ±∆ν/2 (λ0 ±∆λ/2). Then Equation 2.6 becomes:

P = 2AFν−0η0

∫ ν0+∆ν/2

ν0−∆ν/2
dν (1 + cos 2πντ)

= 2AFν−0η0

[

ν +
sin 2πντ

2πτ

]ν0+∆ν/2

ν0−∆ν/2

= 2AFν−0η0∆ν

[

1 +
sinπ∆ντ

π∆ντ
cos 2πν0τ

]
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Figure 2.3: Polychromatic Fringe Coherence.

= 2AFλ−0η0∆λ

[

1 +
sinπ∆λ/λ2

0 D

π∆λ/λ2
0 D

cos k0D

]

= 2AFλ−0η0∆λ

[

1 +
sinπD/Λcoh

πD/Λcoh
cos k0D

]

(2.7)

(with τ ≡ D/c—dimensions of time). This result is qualitatively similar to Equation 2.3.

First it is noteworthy that the leading coefficient of Equation 2.7 is the total collected

power by both apertures in a bandwidth ∆ν (with efficiency η0). Further, as in Equa-

tion 2.3 the term in brackets has a positive-definite oscillatory behavior in D at a frequency

ν0/wavelength λ0—the center-band frequency. But rather than the fringes being observed

at all D as suggested by Equation 2.3, we find the fringes modulated by a sinc function sym-

metrically centered at D = 0, and becoming small as |π∆λ/λ2
0 D| > 1. The sinc-modulation

of the interference fringes has a characteristic scale or coherence length of:

Λcoh ≡
λ2

0

∆λ
. (2.8)

It is noteworthy that the sinc function is the Fourier transform of the top-hat function we

took for the system bandpass.

In Figure 2.3 we give two illustrative examples of the oscillatory argument of Equation 2.7,

showing fringe patterns at 20% (red—Λcoh = 5λ0) and 10% (blue—Λcoh = 10λ0) fractional

bandwidths.
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Equation 2.7 and Figure 2.3 are typical of the types of fringe envelopes that one can expect

from stellar interferometers; it is usually a reasonable first approximation to assume both

the source spectral flux and the system throughput are quasi-constant over a finite frequency

(wavelength) interval.

The fringe envelopes from interferometers can typically be written as:

1 + M(Λcoh, D) cos k0D, (2.9)

where M(Λcoh) is the fringe envelope modulation function, typically given by the Fourier

transform (modulus) of the system bandpass, and k0 is the (possibly weighted) center-band

wave number. In this context Λcoh sets the physical scale for the precision with which the

delays must be matched in the interferometer. Conversely, if it can be measured the relative

delay d1 − d2 becomes a proxy for the source astrometry (Shao et al. 1990).

2.4 Phase Reference of the Interferometer;
Off-Axis and Extended Sources

In general the response of the interferometer to a point-source at location ŝ0 in the sky

is given by something like Equation 2.7; fringes with frequency ω0 modulated by a fringe

envelope that is a function of the system bandwidth (in delay space). In particular, we see

the fringe envelope position is given by the product k0D = k0(ŝ0 ·B + d1 − d2), and we are

motivated to minimize this product. It is conventional to define (or control) the relative

delay d2−d1 to be equal to (a model of) ŝ0 ·B, then we are guaranteed we are at maximum

of the fringe envelope function for a source at ŝ0. In this context ŝ0 becomes our phase

reference or phase tracking center.

Now we can ask what is the response from a point source at ŝ offset slightly from the

reference position ŝ0:

ŝ = ŝ0 + ∆s.

If we write the fringe envelope function as M(Λcoh,∆D) (which goes to unity in the

monochromatic limit), the output power from the interferometer is (after Equation 2.3):

P = 2AF (1 + M(Λcoh,∆D) cos k0(ŝ ·B− ŝ0 ·B))

= 2AF (1 + M(Λcoh,∆D) cos k0(∆s ·B))

= 2AF (1 + M(Λcoh,∆D) cos k0(∆D)) , (2.10)

with ∆D ≡ ∆s ·B. In this construction the sky position ŝ0 as defined by the relative delay

d2 − d1 defines the phase reference of the interference fringes on the sky‡.

‡In fact, the relative delay d2 − d1 defines a circle on the celestial sphere around the baseline vector B.

The peak of the optical aperture reception pattern A(ŝ) breaks the circular symmetry of the dot product

and defines the phase reference ŝ0.
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Extended Sources

Any source with finite surface temperature has the potential for being resolved, so we must

consider the possibility of resolved sources. Let’s describe the source intensity as a function

of position ŝ in the sky as F (ŝ). Typically F has units of power incident per unit area per

solid angle on the sky, and for the moment let’s take this with respect to one particular

wavelength λ. It is also necessary to characterize the throughput or collection efficiency

of the interferometer telescopes as a function of sky position. In terms of what we’ve had

before we’ll write this as A(ŝ, ŝ0), assuming that the telescopes are boresighted on the phase

tracking center ŝ0. It is convenient to take the units of A to be effective cross-sectional area,

such that a product of A(ŝ, ŝ0)F (ŝ) dΩ forms a received power differential.

In the assumption that the radiation from different locations on the source is incoherent,

the detected power from an extended source can be computed as an incoherent sum of

power from the source decomposed into infinitesimal point sources. Such a model can be

written a straightforward extension of the point source model from Equation 2.10:

P (ŝ0,B) =

∫

dΩA(ŝ, ŝ0)F (ŝ, ŝ0) (1 + M(Λcoh,∆D) cos k(∆s ·B))

→

∫

dΩA(∆s)F (∆s) (1 + cos k(∆s ·B)) , (2.11)

where I have suppressed the factor of 2 into the magnitude of A, and dropped the envelope

function as a notational convenience, regressing to a monochromatic source.

It is interesting, and in fact evocative of how optical interferometers measure fringes in

practice, to consider the detected power when a small additional phase is added to one of

the delay line arms. To be definite, let’s call the delay offset δ with dimensions of length

like D, and define it to be positive when a positive delay is added to delay line 1. In this

case the detected power becomes:

P (ŝ0,B, δ) =

∫

dΩA(∆s)F (∆s) (1 + cos k(∆s ·B + δ))

=

∫

dΩA(∆s)F (∆s) (2.12)

+ cos kδ

∫

dΩA(∆s)F (∆s) cos k(∆s ·B)

− sinkδ

∫

dΩA(∆s)F (∆s) sin k(∆s ·B).

It is conventional to introduce the complex visibility V of the brightness distribution B with

respect to the phase reference ŝ0 and aperture function A as:

V (k,B) ≡

∫

dΩA(∆s)F (∆s)e−ik∆s·B. (2.13)

Using V we can write the detected power concisely as:

P (ŝ0,B, δ) =

∫

dΩA(∆s)F (∆s) + Re{V } cos kδ + Im{V } sin kδ

= P0 + Re{V eikδ}, (2.14)
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where I have written the (two) aperture-integrated power as a constant P0:

P0 ≡

∫

dΩA(∆s)F (∆s).

To see why Equation 2.14 is considered progress, let’s look a little closer at V . To make

things definite, let’s take a coordinate system where ŝ0 = (0, 0, 1). So long as either the field

of view of the interferometer telescopes is small or the the source brightness is of limited

angular extent, ∆s is approximately perpendicular to ŝ0 and can be written in terms of

angles α and β (units of radians):

∆s ≈ (α, β, 0),

and the visibility becomes:

V (k,B) =

∫

dα dβ A(α, β)F (α, β) e−ik(αBx+βBy).

It is further conventional to define spatial frequencies u and v§:

u ≡
Bx

λ
=

kBx

2π
,

v ≡
By

λ
=

kBy

2π
, (2.15)

for which V becomes:

V (u, v) =

∫

dα dβ A(α, β)F (α, β) e−2πi(αu+βv) . (2.16)

As written, V (u, v) is a complex quantity with dimensions of power (as given by the product

of A and F ).

2.5 Image Synthesis by Discrete Visibility Measurements

The form of Equation 2.16 is clearly that of a two-dimensional Fourier transform of the

(aperture efficiency modulated) brightness distribution with u and v assuming roles of

spatial frequencies (units of fringe cycles per radian on the sky). That the interferometer

response is related to the Fourier transform of the brightness distribution under certain

assumptions (source incoherence, small-field approximation) is typically known as the van

Cittert–Zernike theorem; the interested reader can find more thorough discussions of the

van Cittert–Zernike theorem in Born and Wolf (1999) and Thompson, Moran, and Swenson

(1986).

§It is further conventional to orient coordinates so u and v represent spatial frequencies in convenient

astronomical coordinates like right ascension and declination, but for the present purpose our choice of

coordinate rotation is arbitrary
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Since Fourier transforms are straightforwardly invertible, the visibility (provided we can

measure it) can be used to compute the source brightness distribution:

F (α, β) =

(
∫

du dv V (u, v) e2πi(αu+βv)

)

/A(α, β). (2.17)

Equation 2.17 suggests the canonical synthesis imaging program: collect a set of visibility

measurements that in some sense approximate the visibility surface over the (u, v) coordi-

nate plane. In practice a set of discrete interferometer baselines Bi targeted on a common

phase-tracking center ŝ0 yields a set of discrete visibility measurements Vi(ui, vi). This dis-

crete visibility field can then be inverted by means of a discrete Fourier transform operation

to obtain a bandwidth-limited estimate of the parent brightness distribution. The accuracy

of the synthesized image is naturally a function of the coverage of the (u, v) plane.

To be concrete, we can describe a sampling function S(u, v) that has the form of a sum of

delta functions at the sampled locations (ui, vi):

S(u, v) ≡
∑

i

δ(u − ui) δ(v − vi). (2.18)

Utilizing this sampling function Equation 2.17 can be written:

Fd(α, β) =

(
∫

du dv V (u, v)S(u, v) e2πi(αu+βv)

)

/A(α, β). (2.19)

Radio Astronomers typically refer to Fd as the dirty brightness distribution or image, in

that it is apparently related to the true brightness distribution F by the convolution of an

effective point-spread function (PSF) or synthesized beam∗:

Fd(α, β) = F (α, β) ∗ p(α, β),

with

p(α, β) =

∫

du dv S(u, v) e2πi(uα+vβ) .

For our discussion suffice it to say that there are deconvolutional methods to estimate

F (α, β) from Fd(α, β) and p(α, β) in the presence of noise; the interested reader is referred

to the NRAO Summer School Proceedings (Perley et al., 1989).

2.6 Visibilities of Various Flavors and Their
Physical Interpretations

The development of Equation 2.13 might leave the reader with an impression that fringe

visibility is a mathematical artifice useful only for image inversion. This is incorrect, and

it is instructive to consider the properties of the visibility in a physical context as well as a

mathematical one.

∗Convolution in the spatial domain is multiplication in the spatial frequency domain
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Figure 2.4: Normalized Visibility Amplitude (Michelson Visibility).

First, we remind the reader that as defined to this point the visibility is dimensional—

it has dimensions of power (Equations 2.13 and 2.16). In fact, the form of Equation 2.14

makes it clear that the modulus or amplitude of the complex visibility describes the amount

of power the interferometer measures in delay-space fringes. In the sense we used the

word in the introduction, the visibility quantitatively captures the coherent response of the

interferometer to the astronomical source. In the sense of language used in the development

of the van Cittert–Zernike theorem, the visibility captures (one component of) the spatial

coherence function of the astronomical source.

Optical interferometers typically measure the normalized fringe power, the fringe power

relative to the total power collected from the source. For instance, in his classical studies

on stellar diameters at Mt. Wilson, Michelson (Michelson, 1920; Michelson and Pease, 1921)

defined the visibility of his fringes as the apparent contrast between light and dark areas

(power PMax and PMin respectively) of fringes visible in his telescope eyepiece. This is

quantified as the Michelson fringe visibility

VM ≡
PMax − PMin

PMax + PMin
,

which, of course, is dimensionless and contained in the interval [0,1]. Michelson’s construc-

tion is depicted in Figure 2.4. As we will demonstrate below, for sources that are unresolved

to the interferometer the fringes oscillate with a peak-to-peak amplitude of the full received

power (2AF ). As the source increases in apparent size they become resolved by the in-
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terferometer and the fringes decrease in amplitude. We shall make these statements more

quantitative in Section 2.7.

Following Michelson’s example, we commonly work in a normalized, dimensionless visibility,

given as an extension of Equation 2.13:

V(k,B) ≡

∫

dΩA(∆s)F (∆s)e−ik∆s·B

∫

dΩA(∆s)F (∆s)
=

V (k,B)

P0
, (2.20)

in which case the detected power given by Equation 2.14 takes the form.

P = P0

(

1 + Re{Veikδ}
)

. (2.21)

Comparison of the Michelson visibility and Equation 2.21 makes it clear that VM = |V|;

the modulus of V is similarly contained in the interval [0,1].†

Figure 2.5 gives a depiction of how I think of the interferometric visibility. Given some

arbitrary source intensity distribution on the sky, the instantaneous interferometer re-

sponse/visibility is given by a sum of the received power from the source multiplied by

†This had to be true—the modulus of the exponential kernel in Equation 2.20 is contained in the interval

[0,1], and we normalize by the received power from the source.
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a cosine grating acceptance function referenced to the instantaneous phase center. This

grating function oscillates along the (projected) baseline direction with angular frequency

λ/B, and is constant in the direction normal to the baseline (up to the angular extent

defined by the collecting aperture acceptance function A). The grating function is further

multiplied by a fringe coherence envelope along the baseline direction in the polychromatic

case; this is not shown in the figure. A small change in the path difference between the

two arms of the interferometer translates the phase tracking center and shifts the reference

point of the grating acceptance function, with corresponding changes in the received fringe

power. Both the baseline direction and angular frequency of the fringes in the grating

acceptance function are conveniently captured in the spatial frequencies u and v.

In terms of predicting the response of the interferometer, rather than evaluating this grating-

modulated source distribution over some continuum of phase centers, we find it quantita-

tively convenient to describe the morphology of the source in terms of a complex visibility

that simultaneously captures both the even (cosine) and odd (sine) components of the

source morphology relative to a fixed phase center. This is given not by the real, cosine

grating function, but by a complex exponential grating function containing both even and

odd components. When the interferometer is phased at the reference center it responds

to the even (cosine) component, and when it is phased ±π/2 radians away from the ref-

erence center it responds to the odd (sine) component. Between these two situations the

interferometer sees an admixture of the even and odd components.

As a final remark for readers familiar with the mathematics of quantum mechanics, I

have often found it constructive to think of the interferometer grating acceptance function

as a particular basis vector in an Hilbert space, with the interferometer response in any

given configuration given by a projection of the source brightness distribution onto the

particular Hilbert basis vector. Like quantum mechanics, a full description of a general

source morphology requires both even and odd components in the space. In this analogy

the act of image synthesis reduces to estimating the properties of the source morphology

having measured some (finite) set of these Hilbert components, and employing some a

priori knowledge of the source morphology (e.g. positivity, bandwidth limitations, etc.).

Perhaps someday I’ll develop this analogy with quantum mechanics further in the context

of a monograph.

2.7 Visibility of Common Source Morphologies

To close our discussion it is interesting and constructive to consider the visibilities of some

of the more common source morphologies. It serves to codify application of the visibility

formalism developed above, and we can discuss some of the general properties of interfer-

ometric visibility in the context of applications. Further, for optical interferometry these

developments are instructive and necessary to interpret observations. We will, character-

istically, be dealing with some idealized examples amenable to analytical treatment (cf.
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Michelson 1890). However, these offer significant insight into the strengths and weaknesses

of the interferometer as an imaging instrument.

2.7.1 Point Source

Many sources are sufficiently distant and isolated that they may be considered point-like, or

at least approximately so. To close the loop on our original calculations as well as providing

a point of departure for multiple sources systems it is interesting to treat the point source

within the visibility framework.

The brightness distribution of a point source at source coordinates (α0,β0) relative to the

phase reference is simple to write down in terms of Dirac delta functions:

F0 δ(α − α0) δ(β − β0).

The total collected power from such a source is:

P0 =

∫

dα dβ A(α, β)F0δ(α − α0) δ(β − β0) = A(α0, β0)F0.

The complex visibility of such a point source is computed after Equation 2.16 as:

V (u, v) =

∫

dα dβ A(α, β)F0δ(α − α0) δ(β − β0) e−2πi(αu+βv)

= A(α0, β0)F0 e−2πi(α0u+β0v) = P0 e−2πi(α0u+β0v) (2.22)

the total received power times a phase. Of course, the normalized visibility for the point

source is trivially:

V = e−2πi(α0u+β0v), (2.23)

a pure phase—of course. Note that for the on-axis (on-reference) source α0 and β0 are

zero, and the normalized visibility is unity. Of course, the normalized visibility amplitude

(modulus) of the point source is always unity.

To compute the interferometer detected power for this source we can insert the complex

visibility, Equation 2.22 (normalized visibility, Equation 2.23) into the detected power equa-

tion, Equation 2.14 (Equation 2.21), yielding:

P = P0

(

1 + Re{e−2πi(α0u+β0v)eikδ}
)

= P0

(

1 + Re{e−ik∆s·Beikδ}
)

(2.24)

= P0 (1 + cos k(∆s ·B)) ,

where we have identified (α0,β0) with ∆s), and set δ = 0 in the last equality to demonstrate

consistency with Equation 2.10.
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2.7.2 Uniform Disk

Longer interferometric baselines offer unprecedented angular resolution—so much resolution

in fact that sources conventionally taken as point sources become resolved. One important

class of such objects is nearby stars; resolving and measuring the angular diameters of stars

is one of the bread-and-butter science topics for optical interferometers (Michelson and

Pease, 1921; Hanbury Brown et al., 1974; Mozurkewich et al., 1991; van Belle et al., 1999).

A reasonable approximation to the brightness distribution of a resolved star is the model

of a uniform disk. (Interesting physics arises from considering deviations from the uniform

disk model; Quirrenbach et al. (1996); Hajian et al. (1998) discuss stellar limb darkening

as measured by optical interferometers.) We can write the model for an axisymmetric disk

in terms of polar coordinates as:

F (ρ) = F0(ρ < θ/2),

ρ being an angular offset on the celestial sphere away from the nominal center of the source,

and θ being the diameter of the source. In such a model the total power collected from the

source is trivially P0 = A0F0πθ2/4—this in fact defines the value of the surface brightness

F0 (dimensions of incident power per square angle on the sky per collecting area). After

Equation 2.16 (and assuming the angular extent of the disk is much smaller than the angular

size of the aperture response function), the complex visibility of the disk at source position

(α0,β0) is:

V (u, v) = e−2πi(α0u+β0v)

∫

dα dβ A0 F e−2πi(uα+vβ),

where we have taken advantage of the phase property of the Fourier transform under coor-

dinate translations to arrange convenient integration variables; we saw an example of this

phase property for the point source in Equation 2.22.

Fourier Transform of the Axisymmetric Function

To compute the visibility for the disk we need to consider the two-dimensional Fourier

transform of an axisymmetric function. Taking f = f(ρ), we wish to evaluate

F (u, v) =

∫

dα dβ f(ρ) e−2πi(uα+vβ) =

∫

dρ dθ ρ f(ρ) e−2πiρ(u cos θ+v sin θ),

with α = ρ cos θ and β = ρ sin θ. It is convenient to drop u and v in favor of some angular

spatial frequency variables:

u ≡ vr cos φ, v ≡ vr sinφ,

vr is a radial spatial frequency; like u and v is has dimensions of fringe cycles per radian

on the sky. In this transformation F becomes:

F (vr, φ) =

∫

dρ dθ ρ f(ρ) e−2πiρvr(cos θ cos φ+sin θ sinφ) =

∫

dρ dθ ρ f(ρ) e−2πiρvr cos(θ−φ).
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F is by construction axially symmetric, so we are free to take φ = 0 without loss of

generality. The θ-integral can now be performed, as:

∫ 2π

0
dθ eixcosθ = 2πJ0(x),

J0 being the zeroth-order Bessel function of the first kind. This allows us to finally write:

F (vr) = 2π

∫ ∞

0
dρ ρ f(ρ) J0(−2πρvr) = 2π

∫ ∞

0
dρ ρ f(ρ) J0(2πρvr) (2.25)

as even-ordered Bessel functions are even functions and odd-ordered Bessel functions are

odd functions. Equation 2.25 is the general form of a two-dimensional Fourier transform

of an axially symmetric function; we have used the axial symmetry to trade the two-

dimensional transform for a one-dimensional transform with a different (slightly more com-

plicated) transform kernel. This transform is commonly known as a Hankel (or Fourier-

Bessel) transform.

Back to the uniform disk, after Equation 2.25 the visibility of the disk is evidently:

V (vr) = e−2πi(α0u+β0v)2π

∫ θ/2

0
dρ ρF0 J0(2πρvr)

= e−2πi(α0u+β0v) 8P0

θ2

∫ θ/2

0
dρ ρ J0(2πρvr).

This is straightforwardly evaluated from:
∫ x

0
dx′x′J0(x

′) = xJ1(x).

Then:

V (vr) = e−2πi(α0u+β0v) 8P0

θ2

∫ x=2πvrθ/2

0

dxx

(2πvr)2
J0(x)

= e−2πi(α0u+β0v) 2P0
J1(πvrθ)

πvrθ
. (2.26)

Recall vr is a radial spatially frequency (v2
r = u2 + v2 = B2

⊥/λ2), making the visibility:

V (B⊥, λ, θ) = e−2πi(α0u+β0v) 2P0
J1(πθB⊥/λ)

πθB⊥/λ
. (2.27)

Trivially the normalized visibility is given by:

V(B⊥, λ, θ) = e−2πi(α0u+β0v) 2J1(πθB⊥/λ)

πθB⊥/λ
. (2.28)

Because of noise properties, optical interferometers typically measure squared normalized

visibility. Trivially the squared normalized visibility amplitude (modulus) for the uniform

disk is:

V2(B⊥, λ, θ) =

(

2J1(πθB⊥/λ)

πθB⊥/λ

)2

. (2.29)
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Figure 2.6: Squared Normalized Visibility Amplitude for the Uniform Disk. The disk
diameter θ is plotted in units of the interferometer fringe spacing λ / B⊥.

Figure 2.6 gives a plot of V2 as a function of disk diameter θ (in units of the fringe spacing

λ / B⊥). In the limit that the disk is much smaller than the fringe spacing V 2 ≈ 1, the

disk is unresolved by the interferometer, and the visibility reduces to the results for the

unresolved point source developed above. As the disk becomes an appreciable fraction of

the fringe spacing the visibility V becomes less than 1; in general terms we speak of a

source being resolved by the interferometer when the normalized visibility amplitude (or

V2) is measurably less than 1. The visibility actually goes to zero—fringes disappear—for

the disk at a diameter of θ ≈ 1.22 λ/B⊥. After this first null the fringes reappear, but at

very low amplitude.

2.7.3 Multiple Stellar Systems

Nature often forms stars in multiple systems, and we are therefore motivated to consider

multiple stellar systems.

We can consider the interferometer response to a multiple system as a collection of quasi-

uniform stellar disks that lie in the aperture acceptance pattern. Labeling the parameters

of the jth source with a subscript, up to aperture efficiency factors, the total received power

from the system is simply the sum of the powers from the visible sources:

P0 =
∑

j

Pj .
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Because of the linear properties of the Fourier transform (physically, because the light

from the individual sources is incoherent), we can compose the system’s complex visibility

as the sum of the complex visibilities of the constituent disks at source positions (αj ,βj)

(Equation 2.27):

V =
∑

j

Vj =
∑

j

Pj
2J1(πθjB⊥/λ)

πθ0B⊥/λ
e−2πi(uαj+vβj),

straightforwardly making the normalized visibility:

V =

∑

j Pj
2J1(πθjB⊥/λ)

πθ0B⊥/λ e−2πi(uαj+vβj)

∑

j Pj
=

∑

j Pj Vj
∑

j Pj
, (2.30)

with Vj given by Equation 2.28 in a uniform disk model.

Equation 2.30 doesn’t offer much physical insight, therefore a concrete example is in order.

Binary stars are a traditional and important target of optical interferometers (Michelson,

1920; Herbison-Evans et al., 1971; Hummel et al., 1995; Hummel et al., 1998; Boden et al.,

1999), with the visibility acting as a proxy for the relative astrometry between the two

components. Straightforward application of Equation 2.30 to a two component binary

system yields:

Vbinary =
P1V1 + P2V2

P1 + P2

= e−2πi(uα1+vβ1) |V1|+ r|V2|e
−2πi(u∆α+v∆β)

1 + r
, (2.31)

having defined r ≡ P2/P1, and relative source coordinates ∆α ≡ α2−α1 and ∆β ≡ β2−β1.

When the observable is V2
binary, this is given straightforwardly by the squared modulus of

Equation 2.31:

V2
binary = V∗

binary Vbinary

=
V2

1 + r2V2
2 + 2r|V1||V2| cos(2π(u∆α + v∆β))

(1 + r)2
(2.32)

=
V2

1 + r2V2
2 + 2r|V1||V2| cos(2πB · sbinary/λ)

(1 + r)2
,

with sbinary ≡ (∆α,∆β). Note that there are corrections due to finite bandwidth effects

when B · sbinary is more than a few fringe spacings; the exact form of these corrections can

depend on details of the fringe measurement process.

In the limit of point-like, equal-amplitude components V 2
binary reduces to:

V2
binary →

1 + cos(2πB · sbinary/λ)

2
.

Clearly as sbinary → 0 the two components of the binary system are unresolved by the

interferometer. With increasing sbinary, as B · sbinary → λ/4, V2
binary → 1/2, and the binary
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Figure 2.7: Squared Normalized Visibility Amplitude on the binary star ι Pegasi (HD
210027). Palomar Testbed Interferometer near-infrared V2 measurements of ι Peg
are shown from four consecutive nights in July 1997. A model based on Equa-
tion 2.32 (and incorporating finite bandwidth effects) is fit to the V2 measurements to
derive an orbit model for ι Peg (from Boden et al. 1999).

system becomes “resolved” by the interferometer. It is noteworthy that this happens at

an order-of-magnitude similar separation as the resolution of two point sources by a filled

aperture telescope; sbinary = λ/B for a Rayleigh resolution criterion (cf. Jenkins and White

1957).

Even when the binary star is quasi-static, Equation 2.32 describes sinusoidal variations of

the fringe visibility (squared modulus) with varying B · sbinary; for ground based interfer-

ometers this variation occurs as a consequence of Earth rotation. Figure 2.7 depicts real

V2 measurements on a binary star ι Pegasi, used to derive an orbit model for the system

(Boden et al., 1999).

2.8 Summary

In this Chapter we have discussed the response of interferometers to idealized astronomical

sources. We have developed this theory in the context of typical detection strategies for op-

tical interferometers: direct (homodyne) combination of the optical fields and detection by

power-linear detectors. This is to be contrasted to the typical heterodyne, amplitude-linear
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detection technologies used in radio interferometers (see Thompson, Moran, and Swenson

1986). Despite the technology differences between between radio and optical interferome-

ters, a common characterization of source properties, namely the source visibility, suffices

to give a qualitative and quantitative description of the interferometer response.

Visibility is a complex quantity whose amplitude (modulus) describes the intensity of the

interferometric fringes, and whose phase describes the position of the fringes relative to a

phase center. Sources that produce fringes (in the space of relative delay between the two

interferometer arms) with an amplitude equal to the full received power of the source are

said to have unit normalized visibility amplitude and are unresolved by the interferometer.

Conversely, fringes with amplitudes less than the received power have normalized visibility

amplitude less than one, and sources that produce such fringes are said to be resolved by

the interferometer.

In ordinary circumstances the source visibility can be computed as a simple Fourier trans-

form of the source brightness morphology, and an inverse Fourier transform of the source

visibility function yields the source morphology. Techniques based on this relationship are

given the term synthesis imaging, and have been employed for many years in radio inter-

ferometry (Perley et al., 1989). Recently optical interferometers have begun making their

first few forays into synthesis imaging (e.g. Baldwin et al. 1996). However, many optical

interferometers today are limited to measurements of (squared) visibility amplitude, with

no (useful) phase information available. Given our knowledge of expected source visibili-

ties for different morphologies (e.g. uniform stellar disk, binary star), even such visibility

amplitude measurements can be used to infer interesting properties of astronomical sources.
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